染色體

跳轉到: 導航, 搜索

染色體(Chromosome )是細胞內具有遺傳性質的物體,易被鹼性染料染成深色,所以叫染色體(染色質);其本質是脫氧核甘酸,是細胞核內由核蛋白組成、能用鹼性染料染色、有結構的線狀體,是遺傳物質基因的載體。

人類X染色體(左)和Y染色體(右)

  

目錄

簡介

將正在分裂的細胞用鹼性染料染色,你會發現細胞核中有許多染成深色的物質,這些物質叫做染色體.

在生物的細胞核中,有一種易被鹼性染料染上顏色的物質,叫做染色質。染色體只是染色質的另外一種形態。它們的組成成分是一樣的,但是由於構型不一樣,所以還是有一定的差別。染色體在細胞的有絲分裂間期由染色質螺旋化形成。用於化學分析的原核細胞的染色質含裸露的DNA,也就是不與其他類分子相連。而真核細胞染色體卻複雜得多,由四類分子組成:即DNA,RNA,組蛋白(富有賴氨酸精氨酸低分子量鹼性蛋白,至少有五種不同類型)和非組蛋白(酸性)。DNA和組蛋白的比例接近於1:1。

正常人的體細胞染色體數目為23對,並有一定的形態和結構。染色體在形態結構或數量上的異常被稱為染色體異常,由染色體異常引起的疾病染色體病。現已發現的染色體病有100餘種,染色體病在臨床上常可造成流產先天愚型先天性多發性畸形、以及癌腫等。染色體異常的發生率並不少見,在一般新

人的染色體

生兒群體中就可達0.5%~0.7%,如以我院平均每年3000新生兒出生數計算,其中可能有15~20例為染色體異常者。而在早期自然流產時,約有50%~60%是由染色體異常所致。染色體異常發生的常見原因有電離輻射、化學物品接觸、微生物感染和遺傳等。臨床上染色體檢查的目的就是為了發現染色體異常和診斷由染色體異常引起的疾病。

染色體檢查是用外周血在細胞生長刺激因子——植物凝集素(PHA)作用下經37℃,72小時培養,獲得大量分裂細胞,然後加入秋水仙素使進行分裂的細胞停止於分裂中期前,以便染色體的觀察;再經低滲膨脹細胞,減少染色體間的相互纏繞和重疊,最後用甲醇冰醋酸將細胞固定於載玻片上,在顯微鏡下觀察染色體的結構和數量。正常男性的染色體核型為44條常染色體加2條性染色體X和Y,檢查報告中常用46,XY來表示。正常女性的常染色體與男性相同,性染色體為2條XX,常用46,XX表示。46表示染色體的總數目,大於或小於46都屬於染色體的數目異常。缺失的性染色體常用O來表示。

人體內每個細胞內有23對染色體.包括22對常染色體和一對性染色體. 性染色體包括:X染色體和Y染色體。含有一對X染色體的受精卵發育成女性,而具有一條X染色體和一條Y染色體者則發育成男性。這樣,對於女性來說,正常的性染色體組成是XX,男性是XY。這就意味著,女性細胞減數分裂產生的配子都含有

染色體

一個X染色體;男性產生的精子中有一半含有X染色體,而另一半含有Y染色體。精子和卵子的染色體上攜帶著遺傳基因,上面記錄著父母傳給子女的遺傳信息。同樣,當性染色體異常時,就可形成遺傳性疾病。男性不育症中因染色體異常引起者約佔2%~21%,尤其以少精子症和無精子症多見。

哺乳動物雄性個體細胞的性染色體對為XY;雌性則為XX。

鳥類的性染色體與哺乳動物不同:雄性個體的是ZZ,雌性個體為ZW。  

歷史

1879年,由德國生物學家弗萊明(Alther Flemming,1843~1905年)經過實驗發現。

1883年國學者提出了遺傳基因在染色體上的學說。

染色體

1888年正式被命名為染色體。

1902年,美國生物學家薩頓和鮑維里通過觀察細胞的減數分裂時又發現染色體是成對的,並推測基因位於染色體上。

1928年摩爾根證實了染色體是遺傳基因的載體,從而獲得了生理醫學諾貝爾獎。

1956年庄有興等人明確了人類每個細胞有46條染色體,46條染色體按其大小、形態配成23對,第一對到第二十二對叫做常染色體,為男女共有,第二十三對是一對性染色體。  

染色體的三個關鍵元素

染色體(variation)要確保在細胞世代中保持穩定,必須具有自主複製、保證複製的完整性、遺傳物質能夠平均分配的能力,與這些能力相關的結構序列是:

1.自主複製DNA序列:

20世紀70年代末首次在酵母中發現。自主複製DNA序列具有一個複製起始點,能確保染色體在細胞周期中能夠自我複製,從而保證染色體在世代傳遞中具有穩定性和連續性。

2 著絲粒DNA序列:

著絲粒DNA序列與染色體的分離有關。著絲粒DNA序列能確保染色體在細胞分裂時能被平均分配到2個子細胞中去。

著絲粒DNA序列特點:(1)一方面在所有的真核生物中它們的功能是高度保守的,另一方面即使在親緣關係非常相近的物種之間它們的序列也是多樣的。(2)絕大多數生物的著絲粒都是由高度重複的串聯序列構成的,然而,在著絲粒的核心區域,重複序列的刪除,擴增以及突變發生的非常頻繁,目前的種種研究表明,重複序列並不是著絲粒活性所必須的。(3)有些科學家提出了可能是DNA的二級結構甚至是高級結構是決定著絲粒位置和功能的因素.即功能的序列無關性。

3.端粒DNA序列:

為一段短的正向重複序列,在人類為TTAGGG的高度重複序列。端粒DNA功能是保證染色體的獨立性和遺傳穩定性。

染色體的分裂分種;一是母鍾分裂,這個一般發生在受精卵的早期,人類具體就是從一條受精卵分裂為個體的23對染色體的過程,意思是按照母體藍圖進行子代分裂,被分裂的23對染色體分別可以造出各種組織器官,如果第一條是造肝的,那麼它上面的所有造肝的基因片段都被打開,相反其它器官的製造信息都被關閉,這個過程母體藍圖染色體要分裂4次(按幾何級數分裂);二是子鍾分裂,按照母體藍圖分裂的23對人類染色體已經在「母鍾分裂」過程中分別被打開,它們各自按照各自的「子代藍圖」進行下面造器官的分裂,一個個有機的器官從此被造出,並且開始發揮各自的功能,這個過程子體藍圖染色體要分裂24次(個物種染色體的不同,其分裂的次數也不同,不過一個總的原則是按染色體數分裂),在24次分裂後,一個完整的人體就被造出來;三是孫鍾分裂,一個獨立的人體,在生長發育的過程中,還有一些器質性和功能性的東西沒有出現,所以必須再打開,進行再分裂。比如七歲兒童脫牙,十多歲少年具有生育能力,有些遺傳病到一定時候的發作,等等。

分裂期的染色體

對應三種分裂,必須有三種控制分裂發生的手段。母鍾分裂是「端點(又叫端粒)控制體系」,這種分裂的原始觸發點在外界,比如飄蕩在空氣中的細菌,它只要沒有接觸食物或易感物,就永遠是不產生分裂的原命(見百度詞條「雙命」),一旦接觸,在端點的作用下就開始母鍾分裂。子鍾分裂是受制於子鍾染色體的端點,與外界刺激無關。孫鍾染色體分裂受制於染色體外相對應的一些蛋白質,它們的功能僅僅是到一定時間將這個包含某信息的片段打開。

依此看來,染色體就是人體的生物鐘。所以我們將第一條受精卵叫「母鍾」,將母鍾分裂出來的23對染色體叫子鍾,將23對染色體造出的各種組織器官所包含的染色體叫「孫鍾」,改變子鍾孫鐘的染色體都不可以改變遺傳,只有改變母鐘的基因才可以造成「變異」。

染色體可以攜帶「遺傳基因」但是不能傳遞「打開信息」,打開某個基因段的所有信息都是通過染色體端點或染色體外的蛋白質發揮作用才完成分裂或複製的。分裂是染色體整體的,複製是染色體某個基因片段的。

性染色體的發現

遺傳的染色體學說的證據來自於這樣的實驗,一些特殊基因的遺傳行為和性染色體(sex chromosome)傳遞的關係。性染色體在高等真核生物的兩種性別中是不同的。性染色體的發現為Sutton-Boveri的學說提供了一個實驗證據。

在孟德爾以前(1891年)德國的細胞學家亨金(Henking,H)曾經用半翅目的昆蟲蝽做實驗,發現減數分裂中雄體細胞中含11對染色體和一條不配對的單條染色體,在第一次減數分裂時,它移向一極,亨金無以為名,就稱其為「X」染色體。後來在其它物種的雄體中也發現了「X」染色體。

1900年麥克朗(McClung, C.E)等就發現了決定性別的染色體。他們採用的材料多為蚱蜢和其它直翅目昆蟲。1902年麥克朗發現了一種特殊的染色體,稱為副染色體(accessory chromosome)。在受精時,它決定昆蟲的性別。1906年威爾遜(Wilson, E.B)觀察到另一種半翅目昆蟲(Proteror)的雌體有6對染色體,而雄性只有5對,另外加一條不配對的染色體,威爾遜稱其為X染色體,其實雌性是有一對性染色體,雄性為XO型。

在1905年斯蒂文斯(Stevens, N)發現擬步行蟲屬(Tenebrio molitor)中的一種甲蟲雌雄個體的染色體數目是相同的,但在雄性中有一對是異源的,大小不同,其中有一條雌性中也有,但是是成對的;另一

染色體

條雌性中怎麼也找不到,斯蒂文斯就稱之為Y染色體。在黑腹果蠅中也發現了相同的情況,果蠅共有4對染色體,在雄性中有一對是異形的染色體。在1914年塞勒(Seiler,J)證明了在雄蛾中染色體都是同形的,而在雌蛾中有一對異形染色體。他們根據異形染色體的存在和性別的相關性,發現了性染色體,現在已完全證實了他們的推論是完全正確的。嚴格地說異形染色體的存在僅是一條線索,而不是證據,不能因為存在異形染色體,就表明其為性染色體。一定要通過實驗證明這條染色體上存在決定性別的主要基因,方能定論。  

揭開X-染色體的神秘面紗

2005年3月17日,在Nature雜誌上發表的一篇文章宣告基本完成對人類X染色體的全面分析。對X染色體的詳細測序是英國Wellcome Trust Sanger研究中心領導下世界各地多所著名學院超過250位基因組研究人員共同完成的,是人類基因組計劃的一部分。

從屬於NIH的美國國家人類基因組研究院的負責人弗朗西絲.柯林斯博士(Francis S. Collins, Ph.D)表示「對X染色體的詳細研究成果代表了生物學和醫藥學領域進展的一個的里程碑。新的研究確認了X染色體上有1098個蛋白質編碼基因--有趣的是,這1098個基因中只有54個在對應的Y染色體上有相應功能.....[詳細]

染色體上的基因

染色體研究是臨床遺傳學研究的基礎。測序結果表明X染色體包涵多達1100種基因。但另人吃驚的是,與之相關的疾病也有百餘種,如X染色體易碎症、血友病、孤獨症、肥胖肌肉萎縮病和白血病等。看來這條染色體決不容小視!

X染色體對應的另一半就是Y染色體。人類Y染色體的測序工作也已經完成,並且發現它並沒有人們之前想像的那樣脆弱。Y染色體上有一個「睾丸」決定基因則對性別決定至關重要。目前已經知道的與Y染色體有關的疾病有十幾種。  

染色體及染色體相關疾病

如果將人類基因組比作一本厚重的書,這本書則由23章組成,而每章都有它自己的故事。到目前為止,已經完成基因測序的常染色體還包括5、6、7、9、10、13、14、16、19、20、21、22染色體。染色體疾病的特點是大段的基因缺損或重複而使患者的智力和外觀發育甚至身體多個器官發生明顯異常,如唐氏症候群和微缺損症。  

基因組測序研究的新進展

基因組研究以國際人類基因組計劃為代表,是當今生物技術研究的「熱中之熱」。人類基因組草圖的完成宣告了一個新時代——後基因組時代的到來。目前已經完成基因組測序的動物還有秀麗線蟲(1998年)、果蠅(2000年)、狗(2004年)和小雞(2004年)等。我國研究人員獨立完成了水稻、家蠶、雞、吸血蟲等物種的全基因組測序工作。  

染色體檢查的臨床適應症

一、生殖功能障礙

不孕症、多發性流產和畸胎等有生殖功能障礙的婦夫中至少有7%~10%是染色體異常的攜帶者。常見的有染色體結構異常如平衡易位和倒位以及數量異常如由於女性少一條X染色體造成的45,XO,或多一條Y染色體造成的47XXY。平衡易位和倒位由於無基因的丟失,攜帶者本身常並不發病,卻可因其生殖細胞染色體異常而導致不孕症、流產和畸胎等生殖功能障礙。性染色體數目異常除可造成不孕外,還常出現第二性徵異常。

二、第二性徵異常者

常見於女性,如有原發性閉經、性發育不良,伴身材矮小、肘外翻、盾狀胸和智力稍有低下,陰毛腋毛少或缺如,後髮際低,不育等,應考慮是否有X染色體異常。常見的X染色體異常有特納氏症候群和環形X染色體。特納氏症候群患者比正常女性少一條X染色體,其染色體核型為:45,XO。環形X染色體患者由於某種原因使X染色體兩端同時出現斷裂,並在斷裂部位重接形成,環形染色體越小臨床症状越重。早期發現這些異常並給予適當的治療可使第二性徵得到一定程度地改善,也可能獲得

生育能力。

三、外生殖器兩性畸形

對於外生殖器分化模糊,如陰莖尿道下裂陰蒂肥大呈陰莖樣,根據生殖器外觀常難以正確決定性別的患者,通過性染色體的檢查有助於做出明確診斷。根據染色體檢查結果和臨床其它檢查,兩性畸形可分為真兩性畸形、假兩性畸形性逆轉症候群等幾種不同情況。

1.真兩性畸形:內生殖器同時存在著兩性的特徵,即體內同時存在睾丸、輸精管卵巢輸卵管。染色體檢查表現為兩種類型:1、46,XX/46,XY,即一個機體內存在著兩個細胞系,每種細胞的比例決定性別取向,產生的原因:X精子和Y精子同時與兩個卵子受精後融合,或X精子和Y精子同時與卵細胞和剛形成、尚未排出卵外的極體分別受精所致。2、核型是46,XX,但是Y染色體的某些基因或片段易位於X染色體上,或常染色體基因突變而具有Y染色體的功能。

2.假兩性畸形:有進一步分為女假兩性畸形男假兩性畸形。女假兩性畸形內生殖器表現為女性,有子宮、卵巢、輸卵管,染色體檢查為46,XX。男性假兩性畸形內生殖器表現為男性即性腺是睾丸,染色體核型是46,XY。

3.性逆轉症候群:即染色體核型與表型相反,例如核型是女性核型46,XX,但表型卻似男性;或核型是男性核型46,XY,但表型卻似女性。46,XX男性的主要臨床表現有睾丸發育不良,隱睾,陰莖有尿道下裂,精子少或無精子,可有喉節、鬍鬚。腋毛稀疏,群體發病率:1/2萬。46,XY女性的主要臨床表現有身材較高,卵巢為條索狀,無子宮,盲端陰道,原發性閉經,乳房不發育。

四、先天性多發性畸形和智力低下的患兒及其父母染色體病的特點就是多發性畸形和智力低下,常見臨床特徵有,頭小、毛髮稀而細、眼距寬、耳位低、短頸、鼻塌而短、外生殖器發育不良、齶裂、肌張低下或亢進、顛癇、通貫掌肛門閉鎖、身材矮小、發育遲緩、眼裂小、髮際低、持續性新生兒黃疸及明顯的青斑眼瞼下垂、心臟畸形腎臟畸形虹膜視網膜缺損等。染色體檢查可發現有21-三體症候群等異常。

五、性情異常者

身材高大、性情兇猛和有攻擊性行為的男性,有些可能為性染色體異常者。如XYY症候群,染色體檢查表現為比正常男性多一條Y染色體,染色體核型表現為47,XYY。患者多數表型正常,即健康情況良好,常有生育能力,但子代男性中同樣為47,XYY的機會大於正常人群。該病的發病率佔一般男性人群的1/750。男性如出現身材修長、四肢細長、陰莖小、睾丸發不發育和精液中無精子者,有時還可以伴有智力異常,應通過染色體檢查確定是否患有可氏症候群,該病患者比正常男性多一條X染色體,染色體核型表現為原`原47,XXY。其發病率在一般男性中為1/800,在男性精神發育不全者中為1%,而在男性不孕者中可高達1/10。

六、接觸過有害物質者

輻射化學藥物、病毒等可以引起染色體的斷裂,如果染色體裂後原來的片段未在原來的位置上重接,將形成各種結構異常的染色體,如缺失、易位、倒位、重複、環形染色體等,這些畸變如發生在體細胞可以引起一些相應的疾病,例如腫瘤。如畸變發生在生殖細胞就發生遺傳效應,殃及子代,可以引起流產、死胎、畸形兒。

七、婚前檢查

婚前檢查可以發現表型正常的異常染色體攜帶者,如染色體平衡易位、倒位,染色體的平衡易位和倒位由於基因不丟失而表型正常,但極易引起流產、畸胎、死胎,盲目保胎會引起畸形兒的出生率增加。婚前檢查還可以發現表形基本正常,但性染色體異常者,這些患者可表現為性功能障礙、無生育能力等。因此,婚前檢查對優生優育有著重要的意義。

八、白血病及其它腫瘤患者

白血病及其它腫瘤時出現的染色體異常可使血細胞癌基因表達,使血細胞無控制的惡性生長。不同的白血病常有各自的特徵性染色體異常,因此染色體檢查有助於白血病的診斷和預後判定。

1.慢性粒細胞白血病:Ph染色體是其標記染色體,由9號和22號染色體部份片段相互易位形成的。Ph染色體的出現為慢性粒細胞白血病的確診指標,治療過程中Ph染色體的出現或消失,還可作為療效和愈後的參考指標。

2.急性非淋巴細胞白血病:染色體改變主要為8號和21號染色體相互易位,以及15號和17號染色體相互易位,形成4條異常染色體,並且增加一條12號染色體。

3.急淋巴細胞白血病:染色體檢查可發現8號和14號染色體相互易位,4號和11號染色體相互易位,9號和22號染色體相互易位形成的6條異常染色體並增加一條21號染色體。

染色體與遺傳學

由於Y染色體的特殊性,在分子人類學等諸多新進人類學分支上也作為了一種尋找世系的手段,例如Y-SNP,Y-STR檢測等,目前在這方面國內比較權威的有上海復旦大學李輝博士,文波、金力先生等人。

關於「染色體」的留言: Feed-icon.png 訂閱討論RSS

給染色體條目的留言

--60.16.161.180 2014年11月10日 (一) 13:07 (CST)

留言: 你好我是46XX(8:19)(P11:P11)這個如果要孩子會是什麼 樣的一個孩子,如果孩子與我的染色體一樣的情況 下這個孩子可以要嗎?謝謝!

添加留言

更多醫學百科條目

個人工具
名字空間
動作
導航
功能菜單
工具箱