多酚氧化酶

跳轉到: 導航, 搜索

多酚氧化酶(polyphenol oxidase,PPO)是自然界中分布極廣的一種金屬蛋白酶,普遍存在於植物、真菌、昆蟲的質體中,甚至在土壤中腐爛的植物殘渣上都可以檢測到多酚氧化酶的活性。由於其檢測方便,是被最早研究的幾類酶之一。自1883年Yoghid發現日本漆樹液汁變硬可能和某種活性物質相關,1938年Keilin D.和Mann G.研究了蘑菇多酚氧化酶的提取和純化,得到多酚氧化酶並將這類酶稱為polyphenol oxidase。多酚氧化酶又稱兒茶酚氧化酶酪氨酸酶苯酚酶,甲酚酶,鄰苯二酚氧化還原酶,是六大類酶中的第一大類氧化還原酶。

多酚氧化酶的共同特徵是能夠通過分子氧氧化酚或多酚形成對應的醌。在廣義上,多酚氧化酶可分為三大類:單酚單氧化酶(酪氨酸酶tyrosinase,EC.1.14.18.1)、雙酚氧化酶(兒茶酚氧化酶catechol oxidse,EC.1.10.3.2)和漆酶(laccase,EC.1.10.3.1)。在這三大類多酚氧化酶中,兒茶酚酶主要分布在植物中,微生物中的多酚氧化酶主要包括漆酶和酪氨酸酶。現在大部分文獻所說的多酚氧化酶一般是兒茶酚氧化酶和漆酶的統稱。  

目錄

二、多酚氧化酶在自然界的分布

1植物中的多酚氧化酶及作用

在植物(如蘋果荔枝菠菜馬鈴薯、豆類、茶葉桑葉、煙草等)組織中,PPO是與內囊體膜結合在一起的,天然狀態無活性,但將組織勻漿或損傷後PPO被活化,從而表現出活性。在果蔬細胞組織中,PPO存在的位置因原料的種類、品種及成熟度的不同而有差異,綠葉中PPO活性大部分存在於葉綠體內[7];馬鈴薯塊莖中幾乎所有的亞細胞部分都含有PPO,含量大約與蛋白質部分相同[8];在茶葉中的PPO分為游離態和束縛態,前者主要存在於細胞液中屬可溶態PPO,而後者則主要存在於葉綠體、粒線體細胞器中,與這些細胞器的膜系統或其他特異部位結合呈不溶態[9],ThanarajS.N.(1990)研究了茶樹新梢中PPO活性及多酚含量對紅茶品質的影響,發現PPO活性強,多酚含量高,對紅茶品質有利,相反則利於綠茶的生產[10];新鮮的蘋果中,多酚氧化酶幾乎全部存在於葉綠體和粒線體中。從這兩部分分別製備的PPO,其底物專一性稍有差異[11]。劉乾剛認為,PPO在細胞內除了存在於葉綠體及粒線體上外,細胞壁也可能存在PPO,且對發酵產生影響,細胞只要輕微破損便有PPO的作用。多酚氧化酶是一種質體酶,有些研究人員認為多酚氧化酶可能僅存在於質體中[12],缺乏質體的組織就不存在多酚氧化酶,例如篩管和篩胞等,但是有質體的組織也可能沒有多酚氧化酶,如C4植物葉。含有質體的植物組織不一定都存在多酚氧化酶,而多酚氧化酶一定在含有質體的植物組織中。

隨分子生物學的發展,象西紅柿、蘋果等的多酚氧化酶的基因已被克隆。浙江大學趙東等[12]對茶樹多酚氧化酶的克隆及其序列進行了比較。從已經克隆的多酚氧化酶的基因看,均屬於基因家族,多則6-7個基因。這些基因的表達具有時空差異和組織特異性(PPO在幼齡組織中表達,在成熟組織中不表達),表明多酚氧化酶的基因在植物中所起的作用不同。高等植物組織發生褐變主要是PPO作用的結果,PPO催化多酚氧化為醌,醌聚合併與細胞內蛋白質胺基酸反應,結果產生黑色素沉澱。  

2微生物中的多酚氧化酶

2.1微生物漆酶

漆酶是三大類多酚氧化酶中作用底物最廣的一類。漆酶最早是在1883年由Yoshida首先從漆樹液中發現的,後來人們又從大量的真菌體中發現了漆酶。漆酶來源很多,結構各異,不同來源的漆酶表現出來的催化特性相差較大。即便是同一來源,如同一白腐菌菌種,也可分泌出不同性質的漆酶組分,包括氧化能力、最適pH、底物專一性等,因此催化氧化作用也各不相同。漆酶分子中的銅離子是漆酶催化反應的活性中心,在催化氧化過程中起決定作用。

在真菌中,漆酶大多分布在擔子菌(Basidimycetes)、多孔菌(Polyporus)、子囊菌(A-somycetes)、脈孢菌(Neurospora)、柄孢殼菌(Po-dospora)和麴黴菌(Aspergillus)等真菌中。擔子菌中的白腐菌是目前獲得漆酶的主要來源。Givaudan等還從稻根上的生脂固氮螺菌(Azospirillum lipoferum)中分離出細菌漆酶。

黃乾明等以粗毛栓菌(Trametes gallica )為出發菌,通過紫外誘變處理其擔抱子、PDA-RBBR平板變色法初篩、ABTS法測定培養液漆酶酶活力復篩,獲得1株漆酶高產誘變菌株SAH-12。

黃俊等(2006)從森林樹木根部土壤中分離得1株具有漆酶活性的細菌菌株,並鑒定該細菌屬於克雷伯氏菌(Klebsiella)屬,命名其為Klebsiella sp-601。這是首例報導Klebsiella細菌具有漆酶活性。

2.2.微生物酪氨酸酶

酪氨酸酶,又叫單酚氧化酶,它可以氧化L-酪氨酸合成L-多巴和黑色素。在高等動物和人類中酪氨酸酶的活性高低與黑色素的形成速率有關,缺乏此酶活性將引起白化病

有報導說,一種假單胞菌(Pseudomonas sp.)具有高產酪氨酸酶的能力,另一種細菌即弗氏檸檬桿菌(Cibrobacter freundii)在L一酪氨酸誘導下能高效表達酪氨酸酶的催化活性,經小試試驗可獲得L-多巴產量9.5g/L,為其中試生產奠定了基礎。

蔡信之等分離並鑒定出嗜麥芽假單胞菌(Pseudomonas maltophilia)AT18能夠穩定地產生酪氨酸酶,並催化產生黑色素。他們已將該菌的酪氨酸酶基因(mel)片斷克隆到E.coli質體載體pUC18上,構建了產生黑色素的工程菌E.coli/pwSY。  

三、多酚氧化酶的研究現狀及展望

1植物PPO的研究現狀及展望

PPO與抗病性的關係人們已進行了廣泛的研究[32]。植物在抵禦病原微生物的侵染過程中,抗性相關酶發揮了重要作用,這主要包括了酚類代謝系統中的一些酶和病原相關蛋白家族PPO通過催化木質素及醌類化合物形成,構成保護性屏蔽而使細胞免受病菌的侵害,也可以通過形成醌類物質直接發揮抗病作用。目前已比較成功的有:黃瓜對黑星病的抗性,蘋果對輪紋病的抗性,香蕉對束頂病的抗性,檸檬對流膠病的抗性,甘薯對蔓割病的抗性,水稻對白葉枯病的抗性等等。

茶葉中所有化學成分中,兒茶素與多酚氧化酶尤為重要,除綠茶、黃茶外,各種茶葉的加工都是基於兒茶素在多酚氧化酶催化下的氧化作用,即所謂的「發酵」過程。有的學者在紅碎茶加工中,利用茶幼果作為外源PPO的載體,以一定比例用於紅碎茶加工過程,結果發現能明顯提高成茶的TF含量,減少TB含量。還有的學者進行了內源酶發酵研究,以期望能在茶飲料中有所應用,改善滋味。

多酚氧化酶是引起果蔬酶促褐變的主要酶類,PPO催化果蔬原料中的內源性多酚物質氧化生成黑色素,嚴重影響製品的營養,風味及外觀品質。這些情況對生產者與消費者均是不希望看到的,僅在少數幾種食品的生產中,人們利用了PPO的作用,如茶葉、咖啡、黑葡萄中的多酚氧化酶。  

2微生物PPO的研究現狀及展望

隨著微生物發酵投人少、見效快、易控制等特點的凸顯,開發微生物中的多酚氧化酶成了研究者關注的熱點。微生物中的漆酶對氧化酚類或芳胺類等多種底物的氧化起催化作用,從而使其在含酚廢水的處理、環境中酚類毒物的降解、飲料加工、食用和藥用菌生產、飼料工業及醫藥衛生等各個領域有著廣泛應用[33]。而利用微生物發酵合成酪氨酸酶也已成為研製治療白癱風、帕金森病老年痴呆症等疾患藥物的努力方向。

由於自然界中存在著大量結構不同的多酚類物質,而催化這些酚類物質氧化的多酚氧化酶也是不同的。如果從微生物中篩選出有效的酶源或者利用酶修飾、基因異源表達和基因工程菌的構建等技術創造出有效的微生物酶源,這將著深遠意義。

關於「多酚氧化酶」的留言: Feed-icon.png 訂閱討論RSS

目前暫無留言

添加留言

更多醫學百科條目

個人工具
名字空間
動作
導航
功能菜單
工具箱