生理學/眼的折光系統及其調節
醫學電子書 >> 《生理學》 >> 感覺器官 >> 視覺器官 >> 眼的折光系統及其調節 |
生理學 |
|
當光線由 空氣進入另一媒質構成的單球面折光體時,它進入物質的折射情況決定於該物質與空氣界面的曲率半徑R和該物質的折光指數n2;若空氣的折光指數為n1,則關係式為
n2R/(n2-n1)=F2 (1)
F2稱為後主焦距或第2焦距(空氣側的焦距為前主焦距或第一焦距),指由折射面到後主焦點的距離,可以表示這一折光的折光能力。表示折光體的折光能力還可用另一種方法,即把主焦距以m(米)作單位來表示,再取該數值的倒數,後者就稱為該折光體的焦度(diopter);如某一透鏡的主焦距為10cm,這相當於0,1m,則該透鏡的折光能力為10焦度(10D)。通常規定凸透鏡的焦度為正值,凹透鏡的焦度為負值。
主焦距是一個折光體最重要的光學參數,由此可算出位於任何位置的物體所形成的折射像的位置。以薄透鏡為例,如果物距α是已知的,像距b可由下式算出:
1/a+1/b=1/F2 (2)
由式(2)可以看出,當物距a趨於無限大時,1/a趨近於零,於是1/b接近於1/F2,亦即像距b差不多和F2相等;這就是說,當物體距一個凸透鏡無限遠時,它成像的位置將在後主焦點的位置。同樣不難看出,凡物距小於無限大的物體,它的像距b恆大於F2,即它們將成像在比主焦點更遠的地方。以上兩點結論,對於理解眼的折光成像能力十分重要。
另外,根據光學原理,主焦點的位置是平行光線經過折射後聚焦成一點的位置,這一結論與上面提到的第一點結論相一致。每一物體的表面,都可認為是由無數的發光點或反光點組成,而由每一個點發出的光線都是輻散形的;只有這些點和相應的折射面的距離趨於無限大時,由這些點到達折射面的光線才能接近於平行,於是它們經折射後在主焦點所在的面上聚成一點,整個物質就達個面上形成物像。當然,無限過的概念本身決定了它是一個不可能到達的位置,實際上對人眼和一般光學系統來說,來自6m以外物體的各光點的光線,都可以認為是近於平行的,因而可能在主焦點所在的面上形成物像。
(二)眼的折光系統的光學特性
當用上述光學原理分析眼的折光特性時,首先遇到的一個困難是,眼球並非一個薄透鏡或單球面折光體,而是由一系列由率半徑和折光指數都不相同的折光體所組成的折光系統。顯然,人眼折光系統的後主焦距不能簡單地由式(1)算出,不過它的最主要的折射發生在角膜,而按幾何學原理進行較複雜的計算,還是可以追蹤出光線經眼內多個折光面行進的途徑,並得出由這些組合的透鏡組所決定的後主焦點的所在位置。
計算結果表明,正常成人眼處於安靜而不進行調節的狀態時,它的折光系統的後主焦點的位置,正好是其視風膜所在的位置。這一解剖關係對於理解正常眼的折光成像能力十分重要。它說明,凡是位於眼前方6m以外直至無限遠處的物體,根據式(2)或由於由它們發出或反射出的光線在到達眼的折光系統時已近於平行,因而都可以在視網膜上形成基本清晰的像,這正如放置於照相機主焦點處的底片,可以拍出清晰的遠景一樣。當然,人眼不是無條件的看清任何遠處的特體,例如,人眼可以看清楚月亮(或其他更遠的星體)和它表面較大的陰影,但不能看清楚月球表面更小的物體或特徵。造成後一限制的原因是,如果來自某物體的光線過弱,或它們在空間處女內傳播時被散射或吸收,那麼它們到達視網膜時已減弱到不足以興奮感光細胞的程度,這樣就不可能被感知;另外,如果物體過小或它們離眼的距離過大,則它們在視網膜上形成的大小,將會小到視網膜分辨能力的限度以下,因而也不能感知。
(三)眼的調節
如果安靜狀態的眼的折光能力正好把6m以外的物體成像在視網膜上,那麼來自較6m為近的物體的光線將是不同程度呈輻射狀的,它們在折射後的成像位置將在主焦點,亦即視網膜的位置之後;由於光線到達視網膜時尚未聚焦,因而物像是模糊的,由此也只能引起一個模糊的視覺形象。但正常眼在看近特時也十分清楚,這是由於眼在看近物時已進行了調節(accommodation),使進入眼內的光線經歷較強的折射,結果也能成像在視網膜上。人眼的調節亦即折光能力的改變,主要是靠晶狀體形狀的改變;這是一個神經反射性活動,其過程如下:當模糊的視覺形象出現在視區皮層時,由此引起的下行衝動經錐體束中的皮層-中腦束到達中腦的正中核,再到達發出動眼神經中副交感節前纖維的有關核團,最後再經睫狀神經節到達眼內睫狀肌,使其中環行肌收縮,引起連接於水晶體囊的懸韌帶放鬆;這樣就促使水晶體由於其自身的彈性而向前方和後方凸出(以前突較為明顯),使眼的總的折光能力較安靜時增大,使較輻射的光線提前聚焦,也能成像在視網膜上。因9-3表示調節前後晶狀體形狀的改變。很明顯,物體距眼球愈近,到達眼的光線輻散程度愈大,因而也需要晶狀體作更大程度的變凸。調節反射進行時,除晶狀體的變化外,同時還出現瞳孔的縮小和兩眼視軸向鼻中線的會聚,前者的意義在於減少進入眼內光線的量(物體移近時將有較強光線到達眼球)和減少折光系統的球面像差和色像差;兩眼會聚的意義在於看近物時物像仍可落在兩眼視網膜的相稱位置。
圖9-3 眼調節前後睫狀體位置和晶狀體形狀的改變
實線為安靜時的情況,虛線為看近物經過調節後的情況,注意晶狀體的前凸比後凸明顯
人眼看近物的能力,亦即晶狀體的調節能力是有一定限度的,這決定於水晶體變凸的最大限度。隨著年齡的增加,水晶體自身的彈性將下降,因而調節能力也隨年齡的增加而降低。眼的最大調節能力可用它所能看光天化日物體的最近距離來表示,這個距離或限度稱為近點。近點愈近,說明晶狀體的彈性愈好,亦即它的懸韌帶放鬆時可以作較大程度的變凸,因而使距離更近的物體也能成像在視網膜上。例如,8歲左右的兒童的近點平均約8.6cm,20歲左右的成為約為10.4cm,而60歲時可增大到83.3cm。
(四)簡化眼和視敏度
由於眼內有多個折光體,要用一般幾何光學的原理畫出光線在眼內的行進途徑和成像情況時,顯得十分複雜。因此,有人根據眼的實際光學特性,設計一些和正常眼在折光效果上相同、但更為簡單的等效光學系統或模型,稱為簡化眼。簡化眼只是一種假想的人工模型,但它的光學參數和其它特性與正常眼等值,故可用來分析眼的成像情況和進行其他計算。常用的一種簡化眼模型,設想眼球由一個前後徑為20mm的單球面折光體構成,折光指數為1.333;外界光線只在由空氣進進球形界面時折射一次,此球面的曲率半徑為5mm,亦即節點在球形界面後方5mm的位置,後主焦點正相當於此折光體的後極。顯然,這相模型和正常安靜的人眼一樣,正好能使平行光線聚焦在視網膜上(圖9-4)。
圖9-4 簡化眼及其成像情況
n為節點,AnB和anb是兩個相似三角形;如果物距為已知,就可由物體大小算出物像
大小,也可算出兩三角形對頂角(即視角)的大小
利用簡化眼可以方便地計算出不遠近的物體在視網膜上成像的大小。如圖9-4所示,AnB和and是具有對頂角的兩個相似的三角形,因而有:
其中nb固定不變,相當於15mm,那麼根據物體的大小和它距眼的距離,就可算出物像的大小。此外,利用簡化眼可以算出正常人眼所能看清的物體的視網膜像大小的限度。檢查證明,正常人眼即使在光照良好的情況下,如果視網膜小於5μm,一般就不能引起清晰的視覺。這說明,正常人的視力或視敏度(visualacuity)有一個限度;要表示這個限度,只能用人所能看清的最小視網膜的大小,而不能用所能看清的物體大小表示,因為物像有大小與物體的大小有關,大致相當於視網膜中央凹處一個視錐細胞的平均直徑(但有些視錐的直徑可小於2μm)。
通常用業檢查視敏度的國際通用的視力表,就是近上述原理設計的。當人眼能看清5m處的一個圓形或E字形上相距1.5mm的缺口的方向時,按簡化眼計算,此缺口在視網膜像中的距離約為5μm(實際計算值為 4.5μm),說明此眼視力正常,定為1.0;由圖9-4也可以算出,當物像為5μm時,由光路形成的兩個三角形的對頂角即視角約相當於1分度(即1');因此,如果受試者在視角為10分分度時才能看清相應增大了視力表上的標準圖形的缺口(相當於國際視力表上最上面一排圖),則視力定為0.1;在表上還列出視力0.2至0.9時的逐步減小的圖形;但國際視力表上對這些相應圖形的大小設計是有缺點的,如相當於0.2視力的圖形比視力0.1的圖形小1/2,而相當於視力1.0的圖形只比視力為0.9時的圖形小了1/9。這種表示視力方法顯然不利於臨床上表示視力的改善程度,例如由原來0.9的視力改善為1.0,或由0.1的視力改善為0.2,雖然視力都增加了0.1,但其真正改善的程度並不一樣,因而不能作為統計處理的數據。為了避免這一缺點,我國有人設計了一種對數視力表(繆天榮,1966),它把國際視力表上記為1.0的正常視力記為5.0,而將視角為10分度時的視力記為4.0,其間相當於視力4.1、4.2直至4.9的圖形,各比上一排形成的視角小=1.259……倍,而log=0.1;這樣,視力表上不論原視力為何值,改善程度的數值都具有同樣的意義。
眼的折光能力和調節能力異常 正常眼的折光系統在無需進行調節的情況下,就可使平行光線聚焦在視網膜上,因而可看清遠處的物體;經過調節的眼,只要物體的距離不小於近點的距離,也能在視網膜上形成清晰的像被看清,此稱為正視眼。若眼的折光能力異常,或眼球的形態異常,使平行光線不能在安靜未調節的眼的視網膜上成像,則稱為非正視眼,其中包括近視、遠視和散光眼。有些眼靜息時折光能力正常,但由於水晶體的彈性減弱或喪失,看遠物時的調節能力減弱,此稱為老視。
近視 多數由於眼球的前後徑過長(軸性近視),致使來自遠方物體的平行光線在視網膜前即已聚焦,此後光線又開始分散,到視網膜時形成擴散開的光點,以致物像模糊。便近視看近物時,因這時聚焦的位置較平行光線時為後,因而眼無需進行調節或進行較小程度的調節,就可在視網膜上成像;這就使近視能看清近物,且遠點比正常眼還要近。糾正近視眼的方法是在眼前增加一個定焦度的凹透鏡片,使入眼的平行光線適當輻散,以便聚焦位置移後,正好能成像在視網膜上;這樣使遠物可以看清,而近物則像正常眼一樣,依靠眼睛自身的調節能力。近視也可由於眼的折光能力超過正常,使平行光線成像在位置正常的視網膜之前,這種近視特稱為屈光近視。
遠視 由於眼球前後徑過短,以致主焦點的位置實際在視網膜之後,這樣入眼的平行光線在到達視網膜時尚未聚焦,也形成一個模糊的像,引起模糊的視覺。這時,患者在看遠物時就需使自己的調節能力,使平行光線能提前聚焦,成像在位置前的視網膜上。由此可見,遠視眼的特點是在看遠物時即需動用眼的調節能力,因而看近物時晶狀體的凸出差差不多已達到它的最大限度,故近點距離較正常人為大,視近物能力下降,糾正的方法是戴一適當焦度的凸透鏡,使看遠時不需晶狀體的調節亦能在像在視網膜上,於是通過調節能力就可像正視眼一樣用來看近物了。
散光 正常眼的折光系統的各折光面都是正球面的,即在球表面任何一點的曲率半徑都是相等的。如果由於某些原因,折光面(通常見於角膜)在某一方位上曲率半徑變小,而在與之相垂直的方位上曲率半徑變大(相當於在一個硬的桌面上輕壓一個桌球時,球面的曲率半徑在垂直的方位上變小,在橫的方位上變大一樣),在這種情況下,通過角膜不同方位的光線在眼內不能同時聚焦,這會造成物像變形和視物不清。這種情況屬於規則散光,可用適當的柱面鏡糾正,後者的特點正是互相垂直方位上具有不同的曲率半徑,當它和角膜的曲率半徑改變大小相抵消時,使角膜的曲率異常得到糾正。
視覺器官 | 瞳孔和瞳孔對光反應 |
關於「生理學/眼的折光系統及其調節」的留言: | 訂閱討論RSS |
目前暫無留言 | |
添加留言 |