生理學/視網膜的結構和兩種感光換能系統

跳轉到: 導航, 搜索

醫學電子書 >> 《生理學》 >> 感覺器官 >> 視覺器官 >> 視網膜的結構和兩種感光換能系統
生理學

生理學目錄

來自外界物體的光線,通過眼內的折光系統在視網膜上形成物像,是視網膜內的感光細胞被刺激的前提條件。視網膜像還有一個物理範疇內的內像,用幾何光學的原理可以較容易地對它加以說明,和外界物體通過照相機的中的透鏡組在底片上形成的物像並無原則上的區別;但視覺系統最後在主觀意識上形成的「像」,則是屬於意識或心理範疇的主觀印象,它由來自視網膜的神經信息最終在大腦皮層等中樞結構內形成。作為感受器生理,重點是視網膜怎樣把物理像轉換成視神經纖維上的神經信號,以及在這些信號的序列和組合中怎樣包括了視網膜像、亦即外界物體所提供的信息內容。應該提出,視覺研究的進展雖然較快,但也只是初步的。

(一)視網膜的結構特點

視網膜的厚度只有0.1-0.5mm,但結構十分複雜。它的主要部分在個體發生上來自前腦泡,故屬於神經性結構,其中細胞通過突觸相互聯繫。經典組織學將視網膜分為十層,但按主要的細胞層次簡化為四層業描述,如圖9-5所示。從靠近脈絡膜的一側算起,視網膜最外層是色素細胞層;這一層的來源不屬神經組織血液供應也來自脈絡膜一側,與視網膜其他層接受來自視網膜內表面的血液供應有所不同;臨床上見到的視網膜剝離,就發生在此層與其它層次之間。色素細胞層對視覺的引起並非無關重要,它含在黑色素顆粒和維生素A,對同它相鄰接的感光細胞起著營養和保護作用。保護作用是除了色素層可以遮繼來自鞏膜側的散射光線外,色素細胞在強光照射視網膜時可以伸出偽足樣突起,包被視桿細胞外段,使其相互隔離,少受其他來源的光刺激;只有在暗光條件下,視桿外段才被暴露;色素上皮的這種活動受膜上的多巴胺受體控制。此層內側為感光細胞層。在人類和大多數哺乳動作動物,感光細胞分視桿和視錐細胞兩種,它們都含有特殊的感光色素,是真正的光感受器細胞。視桿和視錐細胞在形態上都可分為四部分,由外向內依次稱為外段、內段、胞體終足(圖9-6);其中外段是感光色素集中的部位,在感光換能中起重要作用。視桿和視錐細胞在形成上的區別,也主要在外段它們外形不同,所含感光色素也不同。視桿細胞外段呈長桿狀,視錐細胞外段呈圓錐狀。兩種感光細胞都通過終足和雙極細胞層內的雙極細胞發生突觸聯繫,雙極細胞一般再和節細胞層中的神經節細胞聯繫。視網膜中除了這種縱向的細胞間聯繫外,還存在橫向的聯繫,如在感光細胞層和雙極細胞層之間有水平細胞,大雙極細胞層和節細胞層之間有無長突細胞;這些細胞的突起在兩層細胞之間橫向伸展,可以在水平方向傳遞信息,使視網膜在不同區域之間有可能相互影響;這些無長突細胞還可直接向節細胞傳遞信號。近年來發現,在視網膜還存在一種網間細胞,它的細胞體位於雙極細胞層和節細胞層之間,但突起卻伸到感光細胞層和雙極細胞層。如果把感光細胞經過雙極細胞到神經節細胞的途徑,看作是視覺信息的初始階段。近年來還發現,視網膜中除了有通常的化學性突觸外,還有大量電突觸存在。由此可見,視網膜也和神經組織一樣,各級細胞之間存在著複雜的聯繫,視覺信息最初在感光細胞層換能變成電信號後,將在視網膜複雜的神經元網路中經歷某種處理和改變,當視神經纖維的動作電位序列作為視網膜的最終輸出信號傳向中樞時,它們已經是經過初步加工和處理的信息了。

盲點 由節細胞層發出的神經軸突,先在視網膜表面聚合成一整束,然後它透視網膜,在眼的後極出眼球,這就在視網膜表面形成視神經乳頭。在乳頭的範圍內,實際上沒有視網膜特有的細胞結構,因而落於該處的光線或視網膜像的組成部分,將不可能被感知,故稱為盲點。兩側視神經乳頭在視網膜內黃斑或中央凹中心的鼻側約3mm處。但正常時由於用兩眼看物,一側盲點可以被對側視覺補償,人們並不覺察自己的視野中有一處無視覺感受的區域。盲點的存在可用專門設計的方法來證明。

視網膜的主要細胞層次及其聯繫模式圖


圖9-5 視網膜的主要細胞層次及其聯繫模式圖

哺乳動物光感受器細胞模式圖


圖9-6 哺乳動物光感受器細胞模式圖

(二)視網膜的兩種感光換能系統

根據對視網膜結構和功能的研究,目前認為在人和大多數脊椎動物的視網膜中存在著兩種感光換能系統。一種由視桿細胞和與它們相聯繫的雙極細胞和神經節細胞等成分組成,它們對光的敏感度較高,能在昏暗的環境中感受光刺激而引起視覺,但視物無色覺而只能區別明暗;且視物時只能有較粗略的輪廓,精確性差,這稱為視桿系統或晚光覺系統;另一種由視錐細胞和與它們有關的傳遞細胞等成分組成,它們對光的敏感性較差,只有在類似白晝的強光條例下才能被刺激,但視物時可辨別顏色,且對物體表面的細節和輪廓境界都能看得很清楚,有高分辨能力,這稱為視錐系統或晝光覺系統(前述視敏度的測定實際是視錐系統視力的測定)。

證明這兩種相對獨立的感光-換能系統存在的主要依據是:①人視網膜中視桿和視錐細胞在空間上的分布是不均勻的,愈近視網膜周邊部,視桿細胞愈多而視錐細胞愈少;愈近視網膜中心部,視桿細胞愈少而視錐細胞愈多;在黃斑中心的中央凹處,感光細胞全部是視錐而無視桿細胞;與上述細胞分布相對應,人眼視覺的特點正是中央凹在亮光處有最高的視敏度和色覺,在暗外則中央視力較差;相反地,視網膜周邊部則能感受弱光的刺激,但這時無色覺而清晰度較差。②兩種感光細胞和雙極細胞以及節細胞形成信息傳遞通路時,逐級之間都有一定程度的會聚現象(參看第十章),但這種會聚在視錐系統程度較小,在中央凹處甚至可以看到一個視錐細胞只同一個雙極細胞聯繫,而這個雙極細胞也只同一個神經節細胞聯繫的情況,這種低程度會聚或無會聚現象的「單線聯繫」,顯然是視錐系統有較高的精細分辨能力的結構基礎;與此相對照,在視桿系統則普遍存在多個感光細胞同一個雙極細胞聯繫,而多個雙極細胞再同一個神經節細胞聯繫的會聚式排列;在視網膜周邊部,可看到多達250個視桿細胞經少數幾個雙極細胞會聚於一個神經節細胞的情況;在這種情況下,當然不能期待這樣的感覺系統有高的精細分辨能力。但這樣的聚合系統卻具有較強的總和多個弱刺激的能力。③從動物各系統特點來看,某些只在白晝活動的動物如爬蟲類和雞等,視網膜全無視桿而只胡視錐細胞。而另一些只在夜間活動的動物如地松鼠和貓頭鷹等,視網膜中只胡視桿而不含視錐細胞。④視桿細胞中只含有一種感光色素,即視紫紅質(rhodopsin),而視錐細胞卻因所含感光色素的吸收光譜特性不同而分為三種,這是同視桿系統無色覺而視錐系統有色覺的事實相一致的。

32 瞳孔和瞳孔對光反應 | 視桿細胞的感光換能機制 32
關於「生理學/視網膜的結構和兩種感光換能系統」的留言: Feed-icon.png 訂閱討論RSS

目前暫無留言

添加留言

更多醫學百科條目

個人工具
名字空間
動作
導航
功能菜單
工具箱