生物化學與分子生物學/糖原的合成與分解

跳轉到: 導航, 搜索

醫學電子書 >> 《生物化學與分子生物學》 >> 糖代謝 >> 糖原的合成與分解
生物化學與分子生物學

生物化學與分子生物學目錄

糖原是由多個葡萄糖組成的帶分枝的大分子多糖(圖4-14),分子量一般在106-107道爾頓,可高達108道爾頓,是體內糖的貯存形式,分子中葡萄糖主要以α-1,4-糖苷鍵相連形成直鏈,其中部分以α-1,6-糖苷鍵相連構成枝鏈,糖原主要貯存在肌肉肝臟中,肌肉中糖原約佔肌肉總重量的1-2%約為400克,肝臟中糖原佔總量6-8%約為100克。肌糖原分解為肌肉自身收縮供給能量,肝糖原分解主要維持血糖濃度(圖4-15)。

糖原的結構


圖4-14 糖原的結構

肌糖原和肝糖原的功能


圖4-15 肌糖原和肝糖原的功能

目錄

一、糖原的合成

由葡萄糖(包括少量果糖半乳糖)合成糖原的過程稱為糖原合成,反應在細胞質中進行,需要消耗ATP和UTP,合成反應包括以下幾個步驟:

(1)

Gra37zem.jpg


(2)

Gra389ny.jpg


(3)1-磷酸葡萄糖+UTP

Gra38kd5.jpg UDPG+PPi(焦磷酸)

(4)UDPG+糖原(Gn)

Gra386fo.jpg UDP+糖原(Gn+1)

糖原合成酶催化的糖原合成反應不能從頭開始合成第一個糖分子,需要至少含4個葡萄糖殘基的α-1,4-多聚葡萄糖作為引子(primer),在其非還原性末端與UDPG反應,UDPG上的葡萄糖基C1與糖原分子非還原末端C4形成α-1,4-糖苷鏈,使糖原增加一個葡萄糖單位,UDPG是活潑葡萄糖基的供體,其生成過程中消耗UTP,故糖原合成是耗能過程,糖原合成酶只能促成α-1,4-糖苷鍵,因此該酶催化反應生成為α-1,4-糖苷鍵相連構成的直鏈多糖分子如澱粉

機體內存在一種特殊蛋白質稱為glycogenin,可做為葡萄糖基的受體,從頭開始如合成第一個糖原分子的葡萄糖,催化此反應的酶是糖原起始合成酶(glycogen initiaor synthase),進而合成一寡糖鏈作為引子,再繼續由糖原合成酶催化合成糖。同時糖原分枝鏈的生成需分枝酶(branching enzyme)催化,將5-8個葡萄糖殘基寡糖直鏈轉到另一糖原子上以α-1.6-糖苷鍵相連,生成分枝糖鏈,在其非還原性末端可繼續由糖原合成酶催化進行糖鏈的延長。多分枝增加糖原水溶性有利於其貯存,同時在糖原分解時可從多個非還原性末端同時開始,提高分解速度(圖4-16)。

糖原合成


圖4-16 糖原合成

二、糖原的分解

糖原分解不是糖原合成的逆反應,除磷酸葡萄糖變位酶外,其它酶均不一樣,反應包括:

(1)Gn糖原+Pi

Gra37bp5.gif G-1-P+g(n-1)

(2)G-1-P

Gra37w0v.gif G-6-P

(3)G-6-P+H2O

Gra37pa5.gif G+PI

這樣將糖原中1個糖基轉變為1分子葡萄糖,但是磷酸化酶只作用於糖原上的α(1→4)糖苷鍵,並且催化至距α(1→6)糖苷鍵4個葡萄糖殘基時就不再起作用,這時就要有脫枝酶(debranching enzyme)的參與才可將糖原完全分解。脫枝酶是一種雙功能酶,它催化糖原脫枝的兩個反應,第一種功能是4-α-葡聚糖基轉移酶(4-α-D-glucanotrnsferase)活性,即將糖原上四葡聚糖分枝鏈上的三葡聚糖基轉移到酶蛋白上,然後再交給同一糖原分子或相鄰糖原分子末端具自由4羥基的葡萄糖殘基上,生成α(1→4)糖苷鍵,結果直鏈延長3個葡萄糖(圖5-6),而α(1→6)分枝處只留下1個葡萄糖殘基,在脫枝酶的另一功能,即1,6-葡萄糖苷酶活性催化下,這個葡萄糖基被水解脫下,為游離的葡萄糖,在磷酸化酶與脫枝酶的協同和反覆的作用下,糖原可以完全磷酸化和水解(圖4-17)。

糖原的分解


圖4-17 糖原的分解

Gra3781u.jpg


三、糖原代謝的調節

糖原合成酶和磷酸化酶分別是糖原合成與分解代謝中的限速酶,它們均受到變構與共價修飾兩重調節。

(一)糖原代謝的別構調節

糖原合成和分解的調節


圖4-18 糖原合成和分解的調節

6-磷酸葡萄糖可激活糖原合成酶,刺激糖原合成,同時,抑製糖原磷酸化酶阻止糖原分解,ATP和葡萄糖也是糖原磷酸化酶抑制劑,高濃度AMP可激活無活性的糖原磷酸化酶b使之產生活性,加速糖原分解。Ca2+可激活磷酸化酶激酶進而激活磷酸化酶,促進糖原分解(圖4-18)。

糖原合成的抑制


圖4-19 糖原合成的抑制

(二)激素的調節

體內腎上腺素胰高血糖素可通過cAMP連鎖酶促反應逐級放大,構成一個調節糖原合成與分解的控制系統。

當機體受到某些因素影響,如血糖濃度下降和劇烈活動時,促進腎上腺素和胰高血糖素分泌增加,這兩種激素與肝或肌肉等組織細胞膜受體結合,由G蛋白介導活化腺苷酸環化酶,使cAMP生成增加,cAMP又使cAMP依賴蛋白激酶(cAMpdependent protein kinase)活化,活化的蛋白激酶一方面使有活性的糖原合成酶a磷酸化為無活性的糖原合成酶b(圖4?9);另一面使無活性的磷酸化酶激酶磷酸化為有活性的磷酸化酶激酶,活化的磷酸化酶激酶進一步使無活性的糖原磷酸化酶b磷酸化轉變為有活性的糖原磷酸化酶a(圖4?0),最終結果是抑製糖原生成,促進糖原分解,使肝糖原分解為葡萄糖釋放入血,使血糖濃度升高,肌糖原分解用於肌肉收縮。

糖原合成的抑制


圖4-20 糖原合成的抑制

32 糖異生 | 血糖及血糖含量調節 32
關於「生物化學與分子生物學/糖原的合成與分解」的留言: Feed-icon.png 訂閱討論RSS

目前暫無留言

添加留言

更多醫學百科條目

個人工具
名字空間
動作
導航
功能菜單
工具箱