物鏡

跳轉到: 導航, 搜索

物鏡

一、含義:

物鏡是由若干個透鏡組合而成的一個透鏡組。組合使用的目的是為了克服單個透鏡的成像缺陷,提高物

鏡的光學質量。顯微鏡的放大作用主要取決於物鏡,物鏡質量的好壞直接影響顯微鏡映像質量,它是決

定顯微鏡的解析度和成像清晰程度的主要部件,所以對物鏡的校正是很重要的。

消色差物鏡

二、物鏡類型:  

目錄

消色差物鏡

1.消色差物鏡 (Achromatic) 是較常見的一種物鏡(表1-1),由若干組曲面半徑不同的一正一負膠合透

鏡組成,只能矯正光譜線中紅光和藍光的軸向色差。同時校正了軸上點球差和近軸點慧差,這種物鏡不

能消除二級光譜,只校正黃、綠波區的球差、色差,未消除剩餘色差和其他波區的球差、色差,並且像

場彎曲仍很大,也就是說,只能得到視場中間範圍清晰的像。使用時宜以黃綠光作照明光源,或在光程

中插入黃綠色濾光片。 此類物鏡結構簡單,經濟實用,常和福根目鏡、校正目鏡配合使用,被廣泛地

應用在中、低倍顯微鏡上。在黑白照相時,可採用綠色濾色片減少殘餘的軸向色差,獲得對比度好的相

片。

2.復消色差物鏡(Apochromatic) 由多組特殊光學玻璃和熒石製成的高級透鏡組組合而成。將紅、藍

、黃光校正了軸向色差,消除了二級光譜,因此像質很好,但鏡片多、加工和裝校都較困難。色差的校

正在可見光的全部波區。若加入藍色或黃色濾光片效果更佳。它是顯微鏡中最優良的物鏡,對球面差、

色差都有較好的校正,適用於高倍放大。但仍需與補償目鏡配合使用,以消除殘餘色差。

物鏡

3.平面消色差物鏡(Plana chromatic) 採用多鏡片組合的複雜光學結構,較好地校正像散和像場彎曲,

使整個視場都能顯示清晰,適用於顯微攝影。該物鏡對球差和色差的校正仍限於黃綠波區,且還存在剩

余色差。

4.平面復消色差物鏡(PF, Planapochromat) 除進一步作像場彎曲校正外,其它像差校正程度均與復消

色差物鏡相同,使映像清晰、平坦;但結構複雜,製造困難。

5.半復消色差物鏡(Halfapochromatic) 部分鏡片用熒石製成,故又稱熒石物鏡,性能比消色差物鏡好,

價格比復消色差物鏡便宜。校正像差程度介於消色差與復消色差兩種物鏡之間,但其它光學性質都與後

者相近;價格低廉,最好與補償目鏡配合使用。

三、物鏡性質

1.放大倍數:物鏡的放大倍數,是指物鏡在線長度上放大實物倍數的能力指標。有兩種表示方法,一種

是直接在物鏡上刻度出如8×、10×、45×等;另一種則是在物鏡上刻度出該物鏡的焦距f,焦距越短,放

大倍數越高。前一種物鏡放大倍數公式為M物=L/f物,L是光學鏡筒長度,L值在設計時是很準確的,但

實際應用時,因不好量度,常用機械鏡筒長度。機械鏡筒長度是指從顯微鏡目鏡介面處之直線距離。每

一物鏡上都用數字標明了機械鏡筒長度。

物鏡

2.鏡筒長度: 鏡筒長度是指物鏡底面到目鏡頂面的距離。由於物鏡的像差是依據一定位置的映像來校

正的,因此物鏡一定要在規定的機械鏡筒長度上使用,一般顯微鏡的機械鏡筒長度多為160mm、

170mm、190mm。金相顯微鏡在攝影時,由於放大倍數不同,映像投射距離變化很大,因此,優良的

物鏡的像差是按任意鏡筒長度校正的,即在無限長範圍內,物鏡像差均已校正。

3.數值孔徑:數值孔徑表徵物鏡的聚光能力,是物鏡的重要性質之一,通常以「NA」表示。物鏡的數值孔

徑大小決定了物鏡的分辨能力(鑒別)及有效放大倍數。根據理論推導得出:NA=nsinθ

增大物鏡的數值孔徑有兩個途徑:

(1) 增大透鏡的直徑或減小物鏡的焦距即設計短焦距的物鏡,以增大孔徑半形θ。但此法會導致

像差增加及製造困難,一般不採用。實際上sinθ的最大值只能達到0.95。

(2) 增大物鏡與觀察物之間的折射率n。干係物鏡是以空氣為介質的,折射率n=1,一般用於低倍

物鏡。油系物鏡常以松柏油(n=1.515,NA=1.4)、α-壹代溴萘(n=1.658,NA=1.60)為介質,用於

高倍物鏡。油物鏡的數值孔徑此時可達1.30~1.40,其放大倍數可達100~140倍。但干係物鏡不能隨便

用油作為介質。  

物鏡的最小數值孔徑系列、參數、色圈及標誌

4.物鏡的標記:在物鏡外殼上刻有不同的標記浸液記號、物鏡類別、放大率、數值孔徑、機械筒長度、

蓋玻片厚度。油:表示浸液為松柏油;100×/1.25:表示物鏡放大率為100倍,數值孔徑1.25;160/0:

表示機械鏡筒長度為160mm;「0」表示無蓋玻片。有些物鏡刻有160/-:表示機械鏡筒長度為160mm。「-

」表示可有可無蓋玻片。在物鏡上刻有色圈表示物鏡的放大率。高倍物鏡通常都為油浸系,油鏡頭用「油

」(或OiI,ÖL,HL)或外殼塗一黑圈來表示。

5.物鏡的鑒別能力:顯微鏡的鑒別能力主要決定於物鏡。物鏡的鑒別能力可分為平面和垂直鑒別能力。

物鏡(objective lens)

物鏡是決定光學顯微鏡基本性能及功能的最重要的光學單元。因此,為了滿足各種需求和應用,我們研製出了有著最佳光學性能和功能(這對光學顯微鏡而言也是最重要的性能和功能)的物鏡,推出了能滿足不同使用目的多種物鏡產品。

基本上物鏡是按照用途、觀察方法、倍率、性能(像差校正)等進行分類。其中,按照像差校正來分類的是顯微鏡物鏡特有的分類方法。

下面進行分類。  

按照用途分類

光學顯微鏡的用途大致分為「生物用」和「工業用」兩大類。物鏡也可以按照這兩種用途,劃分為「生物用」物鏡和「工業用」物鏡。在生物用途中,一般是將生物標本放置在載玻片上,並從上面用蓋玻片遮蓋固定。由於生物用物鏡需要透過蓋玻片觀察樣本,所以採用了考慮到蓋玻片的厚度(一般為0.17 mm)的光學系統設計。而在工業用途中,一般是在金屬礦物切片、半導體晶圓和電子零部件等標本沒有被遮蓋的狀態下進行觀察的。所以,工業用物鏡採用了物鏡前端和標本之間沒有蓋玻片狀態的最佳光學系統設計。  

按照觀察方法分類

根據光學顯微鏡的用途開發出了各種觀察方法,也開發出了對應這些觀察方法的專用物鏡。可以按照觀察方法劃分物鏡。例如,「反射暗視場用物鏡(內部透鏡的周圍有環狀照明光路)」、「微分干涉用物鏡(減少透鏡內部失真,優化了與微分干涉稜鏡的光學特性組合)」、「熒光用物鏡(改善了近紫外線領域的透射率)」、「偏振光用物鏡(極大程度減少了透鏡的內部失真)」和「相位差用物鏡(內置相位板)」等。  

按照倍率分類

光學顯微鏡是在稱為物鏡轉換器的裝置上安裝了多個物鏡。這樣,只要轉動物鏡轉換器就可以把低倍率切換到高倍率,輕鬆完成倍率變換。所以一般是在物鏡轉換器上安裝一組不同倍率的物鏡。為此,物鏡的產品陣容由低倍率(5×、10×)、中倍率(20×、50×)和高倍率(100×)物鏡構成。其中,特別是在高倍率產品中,為了得到高清晰成像,我們推出了在物鏡的前端與標本之間填充合成油、水等折射率高的專用液體的液浸物鏡。另外,還推出了用於特殊用途的超低倍率(1.25×、2.5×)和超高倍率(150×)物鏡等。  

像差校正和物鏡的分類

按照色差校正分類(等級)根據軸色差(縱向色差)校正的程度,可以分為消色差、半消色差(Fluorite)、復消色差3個等級。產品陣容也按照普通級別到高級別排序,價格不同。

在軸色差校正中,校正了C線(紅:656.3 nm)和F線(藍:486.1 nm)2種顏色的物鏡稱為消色差透鏡(Achromat)。紅藍2色以外的光線(一般以紫色的g線為對象:435.8 nm)在離開焦平面的面上聚焦,這個g線稱為2級光譜。色差校正範圍達到這個2級光譜的物鏡稱為復消色差透鏡(Apochromat)。也就是說,復消色差透鏡是對3色(C線、F線、g線)進行軸色差校正的物鏡。下圖以波像差表示了消色差透鏡和復消色差透鏡在色差校正上的不同。由此圖可以看出,與消色差透鏡相比,復消色差透鏡可以在更廣的波長範圍內校正色差。

色差校正的比較(消色差透鏡和復消色差透鏡)

另一方面,該2級光譜(g線)的色差校正程度,被設定在消色差透鏡和復消色差透鏡的中間的物鏡,稱為半消色差透鏡(或稱Fluorite)。

顯微鏡物鏡的光學系統設計中,一般來說N.A.越大,或者倍率越大,2級光譜的軸色差校正就越難。不僅如此,由於軸色差以外的各種像差以及正弦條件都必須校正,所以難度更大。為此,越是高倍率的復消色差物鏡,就需要越多的像差校正透鏡,甚至有使用了超過15枚透鏡的物鏡。為了精確的校正2級光譜,有效的做法是將2級光譜色散較少的「異常色散玻璃」用於透鏡組中效果較強的凸透鏡。該異常色散玻璃的代表是螢石(CaF2),雖然螢石的加工比較困難,但是長久以來一直被用於復消色差透鏡。最近開發出了異常色散性與螢石非常接近的光學玻璃,加工性也得到了改善,逐漸取代螢石成為主流。

按照場曲校正分類在顯微鏡的使用中,照片拍攝和電視攝像機的拍攝越來越普通,對鮮明的全視場影像的要求也越來越多。因此,能精確校正場曲的平面(Plan)物鏡逐漸成為主流。在校正場曲時,需要將光學系統的匹茲堡(Petzval)曲率設計為0,而倍率越高的物鏡其校正越難(難以與其他各種像差校正並存)。被校正過的物鏡上,前端的鏡片組為較強凹下形狀,而後端的鏡片組的構成也為強凹下形狀,這是透鏡類型上的特徵。

關於「物鏡」的留言: Feed-icon.png 訂閱討論RSS

目前暫無留言

添加留言

更多醫學百科條目

個人工具
名字空間
動作
導航
功能菜單
工具箱